Minggu, 06 September 2009

all about biologi bab Tumbuhan kelas XI IPA

PENGERTIAN TRANSPOTASI

Transportasi: Merupakan proses mobilisasi, pergerakan perpindahan atau pengangkutan air, mineral dan hasil fotosintesis ke seluruh bagian tumbuhan

PENGERTIAN TRANSLOKASI

Dalam proses transpotasi terjadi pembagian air, mineral dan hasil fotosintesis kepada jaringan-jaringan yang membutuhkan. Peristiwa pembagian ini dinamakan translokasi

I. BAGAIMANA AIR DAN GARAM MINERAL MASUK KE TUBUH TANAMAN? PENGANGKUTAN ETRA VASKULAR

Mula-mula air masuk melalui rambut akar. Air kemudian masuk ke dalam korteks menuju berkas pengangkut. Dalam korteks air akan melalui 2 jalur yakni :

a. Simplas

Simplas merupakan proses pengangkutan intrasel (di dalam) sel hidup. Air akan bergerak melalui plasmodesmata. Diperkirakan terdapat 5 x 108 plasmodesmata/cm2. Hal ini menunjukkan banyak sekali saluran yang terdapat pada sel-sel yang berdekatan.

b. Apoplas

Apoplas merupakan proses pengangkutan air melalui ruang-ruang diantara dinding sel.

c. Setelah itu air akan mencapai endordermis. Dalam endodermis terdapat lapisan gabus yang disebut pita Caspary. Air kemudian masuk ke dalam pita Caspary.

B. PENGANGKUTAN INTRAVASKULER

· Setelah air masuk dalam pita Caspary, air akan masuk ke dalam jaringan sel hidup yang dinamakan perisikel. Perisikel merupakan jaringan sel hidup yang mengelilingi xylem dan floem.

· Antara perisikel dan endodermis terdapat tabung penyalur yang dinamakan stilus. Melalui perisikel air akan disalurkan ke dalam xylem dan dialirkan ke seluruh tubuh tanaman.

Perjalanan air: (A. Ekstravascular) Rambut akar 1 ® korteks 2 (simplas–apoplas ) ® endodermis 3 (pita Caspary) ® (B.Intravaskular) perisikel 4 ® xylem 5 ® seluruh tubuh 6.

II. BAGAIMANA AIR BISA NAIK KE PUNCAK POHON?

Faktor-faktor apakah yang mampu membuat air bergerak dari akar sampai ke puncak pohon yang tingginya mencapai puluhan meter?

· Tekanan akar

· Transpirasi

· Gaya kohesi

· Anatomi xylem

1. TEKANAN AKAR

Mula-mula air dari tanah masuk ke bulu akar. Karena adanya tekanan akar air akan bergerak ke atas. Daya dorong ke atas oleh akar inilah yang dikenal sebagai tekanan akar. Dalam proses transport air, tekanan akar berfungsi:

a. Menaikkan air dan memelihara aliran

Contoh: Bila tanaman pisang ditebang lalu ditengahnya dibuat ceruk, maka dalam beberapa jam akan terisi oleh air.

b. Melawan tekanan dalam jaringan xylem

Dalam jaringan xylem yang berisi air akan bekerja dua gaya yakni gaya adhesi dan gaya kohesi. Gaya adhesi berpengaruh negative terhadap aliran air (menghambat). Tekanan akarlah yang bekerja untuk melawan hambatan ini.

2. TRANSPIRASI

Transpirasi merupakan peristiwa keluarnya uap air dari tubuh tumbuhan. Pada tumbuhan peristiwa ini biasanya berhubungan dengan kehilangan air lewat stomata, kutikula dan lentisel.

· Manfaat transpirasi: Membantu penyerapan mineral dari tanah dan menghilangkan panas pada daun.

Penelitian oleh Tibbits (1979) menunjukkan bahwa penyerapan kalsium dan boron sangat dipengaruhi oleh laju transpirasi.

Bila laju transpirasi rendah terjadi defisiensi sebaliknya bila laju transpirasi tinggi terjadi peningkatan kadar mineral.

Umumnya penyerapan mineral dilakukan bersama dengan penyerapan air, sehingga transpirasi secara tidak langsung membantu transpor air ke seluruh tubuh tanaman

3. GAYA KOHESI

Air merupakan senyawa yang memiliki daya pegang sangat besar. Hal ini disebabkan gaya tarik antar molekul hydrogen sangat tinggi = gaya kohesinya tinggi.

4. ANATOMI XYLEM

Pada xylem terdapat 2 jenis jaringan pengangkut air yakni: Trakeid dan pembuluh. Trakeid dan pembuluh merupakan jaringan mati yang membentuk satu berkas tegak atau kumpulan pipa kapiler. Perbedaan trakeid dan pembuluh:

· Ukuran trakeid lebih panjang tapi diameternya lebih kecil yakni antara 10 – 25 mm (1m =10-3 mm). Sel trakeid berujung runcing dan sambung-menyambung membentuk pipa kapiler yang panjang. Sambungan pada ujung yang runcing memungkinkan air bergerak dari satu trakeid ke trakeid lain.

· Ukuran pembuluh lebih pendek namun diameternya lebih besar berkisar 40 - 80 mm, ukuran terbesar mencapai 500 mm. Pembuluh dilengkapi dengan spiral dan (cincin) lingkaran berpori. Adanya spiral membuat pembuluh dapat tumbuh memanjang sambil tetap mengalirkan air.

Berdasarkan penelitian Hagen dan Poiseuille :

· Air yang mengalir pada trakeid lebih sedikit. Hal ini disebabkan diameter trakeid lebih kecil, antara dinding trakeid dan air akan bekerja gaya adhesi yang menghambat aliran air. Namun karena adanya tekanan akar yang membantu melawan gaya adhesi, pada trakeid air dapat bergerak ke atas

· Pembuluh akan lebih banyak mengalirkan air dibandingkan trakeid. Pada pembuluh yang berukuran besar, air yang menempel pada dinding tidak bergerak karena gaya adhesi. Sedangkan air yang berada ditengah-tengah akan mengalir lancar.

III. TRANSPOR DALAM TUBUH TANAMAN

PASIF

AKTIF

1. DIFUSI

2. OSMOSIS

3. IMBIBISI

4. PINOSITOSIS

1. POMPA SITOKROM

2. CARRIER ION

A. TRANSPOR PASIF

· Perististiwa transport pasif disebut juga penyerapan pasif. Peristiwa ini terjadi pada permukaan dinding atau membrane sel.

· Transpor pasif dapat terjadi melalui difusi, osmosis maupun aliran massa (akibat transpirasi) dimana prosesnya tidak membutuhkan energi metabolic.

· Materi yang diserap berupa ion mineral (kation+ atau anion-).

1. DIFUSI :

Pergerakan molekul dari daerah yang potensialnya tinggi ke daerah yang potensialnya rendah. Atau dari daerah yang kadar kekentalannya tinggi (hipertonis) ke daerah sifat cairannya lebih encer (hipotonis). Difusi dibagi menjadi dua:

· Difusi sederhana: zat terlarut dapat keluar masuk melalui saluran yang terdapat pada membrane sel.

· Dalam peristiwa difusi dikenal juga istilah difusi yang difasilitasi. Peristiwa ini melibatkan protein carrier untuk membawa zat-zat keluar masuk sel.

2. OSMOSIS

Perpindahan air dari daerah hipotonis ke daerah hipertonis melalui membrane semi permeable

3. IMBIBISI

Dalam hubungannya dengan pengambilan zat oleh tanaman, imbibisi berarti kemampuan dinding dan membrane sel untuk menyerap air dari luar.

· Sel menyerap air ® dinding sel mendapat tekanan dari dalam

· Tekanan turgor: Tekanan isi sel pada dinding sel. Besarnya tekanan isi sel = besarnya tekanan dinding sel.

· Jika sel berada dalam lingkungan yang hipertonis, maka air dalam sel akan tertarik keluar. Sel kehilangan tekanan turgor dan protoplasma akan lepas dari dinding sel. Peristiwa ini dikenal dengan nama plasmolisis.

· Jika sel berada dalam lingkungan yang hipotonis, maka akan terjadi imbibisi dan sel akan mengembang.

4. PINOSITOSIS

Zat terlarut diangkut melalui vesikel atau gelembung pada sisi membrane dan isinya dikeluarkan pada sisi lain. Proses ini pada dasarnya merupakan pengosongan vakuola-vakuola kecil melalui membrane.

a. Percobaan Brigg dan Robertson

· Sel/jaringan dipindahkan dari medium berkadar garam rendah ke medium berkadar garam tinggi (1) mula-mula terjadi pengambilan ion dengan cepat yang tidak dikontrol oleh metabolisme, (2) pengambilan konstans, (3) pengambilan lambat yang dikontrol oleh metabolisme.

· Bila jaringan kembali dipindahkan pada medium berkadar garam rendah, akan terjadi difusi ion yang terserap pada percobaan sebelumnya.

· Fakta: Sel atau jaringan yang dimasukkan dalam larutan garam dapat melakukan difusi bebas sampai mencapai keseimbangan dengan medium di luarnya.

· Bagian sel atau jaringan dimana difusi bebas dapat terjadi dinamakan outer space.

b. Hipotesis Donnan : Keseimbangan Donnan

· Dalam membrane terdapat sejumlah anion-. Diluar membrane juga terdapat anion- dan kation+. Membran sel tidak permeable terhadap anion- di dalam sel, namun permeable terhadap anion- dan kation+ di luar sel.

· Anion- dan kation+ dari luar sel akan berdifusi melalui membrane dan masuk ke dalam sel. Difusi akan terus terjadi sampai keadaan menjadi seimbang.

· Konsentrasi kation+ yang masuk ke dalam sel lebih besar daripada konsentrasi anion- .

· Hal sebaliknya akan terjadi bila kation+ sudah ada di dalam membrane dan membrane tidak permeable terhadap kation+.

B. TRANSPOR AKTIF

Pengangkutan ion dengan bantuan energi metabolik dinamakan transport aktif. Pengangkutan aktif melalui membrane yang tidak permeable memerlukan senyawa carrier.

· Dalam kondisi fisiologis yang normal, plasmalemma sangat tidak permeable terhadap angkutan pasif. Tingginya derajat impermeabilitas ini menyebabkan penyerapan ion harus dilakukan secara aktif, walaupun konsentrasi ion dalam sel lebih rendah dari pada di luar sel.

· Sebaliknya bila sel harus melawan gradient konsentrasi, maka dibutuhkan pengangkutan aktif. Misalnya bila konsentrasi garam dalam sel cukup tinggi, untuk memasukkan garam dari luar ke dalam diperlukan energi. Keadaan ini disebut melawan gradient konsentrasi.

· Energi yang dibutuhkan untuk transport aktif berasal dari ATP. ATP dapat dihasilkan dari fotosintesis maupun dari respirasi.

Beberapa kemungkinan pengangkutan aktif dalam tumbuhan:

1. Pompa sitokhrom

Lundegardh dan Bustrom (1933): Laju respirasi meningkat bila tumbuhan dipindahkan dari air ke dalam larutan garam. Melalui percobaan tersebut Lundegard menyatakan teori:

a. Penyerapan kation berbeda dengan anion

b. Ada perbedaan konsentrasi oksigen dipermukaan luar dan permukaan dalam membrane. Terjadi oksidasi pada membrane luar dan reduksi pada membrane dalam

c. Penyerapan anion terjadi melalui system sitokrom.

Menurut hipotesis Lundegardh:

Permukaan dalam membrane sel

· Reaksi dehidrogenasi pada permukaan dalam membrane akan menghasilkan proton (H+) dan electron (e-)

· Elektron (e-) yang dihasilkan akan mengalir keluar melalui rangkaian sitokrom, sementara anion+ bergerak ke arah dalam

· Besi teroksidasi dan sitokrom tereduksi akibat penambahan electron (e-) hasil dehidrogenasi

Permukaan luar membrane sel

· Besi tereduksi dan sitokrom teroksidasi, melepaskan electron (e-) dan menangkap anion+

· Elektron (e-) yang dilepaskan bergabung dengan proton dan oksigen menghasilkan molekul air

Akhir reaksi

· Anion akan dilepaskan pada bagian dalam

· Kation akan diserap secara pasif untuk menyeimbangkan perbedaan potensial

2. Carrier ion

Beberapa hipotesis yang berhubungan dengan carrier ion:

a. Protein carrier mungkin ATP ase

b. Angkutan mungkin terjadi karena adanya perbedaan electron kimia yang diakibatkan oleh angkutan electron

c. Angkutan yang terjadi karena perbedaan pH, yang diakibatkan oleh system angkutan electron atau ATP-ase

· Energi hasil hidrolisis ATP digunakan mengubah konformasi protein pembawa (ATP-ase), ion yang ditangkap pada satu sisi akan dilepaskan pada sisi yang lain.

· Bila protein pembawa mengangkut kation, otomatis akan terjadi perbedaan muatan, anion akan masuk secara difusi.

· Selektivitas angkutan kation disebabkan oleh ikatan secara selektiv oleh ATP-ase.

Berdasarkan fungsinya, parenkim dibagi menjadi bebrapa jenis jaringan, yaitu:

1) Parenkim Asimilasi

Biasanya terletak di bagian tepi suatu organ, misalnya pada daun, batang yang berwarna hijau, dan buah. Di dalam selnya terdapat kloroplas, yang berperan penting sebagai tempat berlangsungnya proses fotosintesis,


2) Parenkim Penimbun

Biasanya terletak di bagian dalam tubuh, misalnya: pada empulur batang, umbi akaL umbi lapis, akar rimpang (rizoma), atau biji. Di dalam sel-selnya terdapat cadangan makanan yang berupa gula, tepung, lemak atau protein,


3) Parenkim Air

Terdapat pada tumbuhan yang hidup di daerah panas (xerofit) untuk menghadapi masa kering, misalnya pada tumbuhan kaktus dan lidah buaya,

4) Parenkim Udara

Ruang antar selnva besar, sel- sel penyusunnya bulat sebagai alat pengapung di air, misalnya parenkim pada tangkai daun tumbuhan enceng gondok


1) Xilem

Xilem merupakan jaringan kompleks karena tersusun dari beberapa tipe sel yang berbeda. Penyusun utamanya adalah trakeid dan trakea sebagai saluran pengangkut air dengan penebalan dinding sel yang cukup tebal sekaligus berfungsi sebagai penyokong. Xilem juga tersusun atas serabut, sklerenkim, serta sel-sel parenkim yang hidup dan berperan dalam berbagai kegiatan metabolisme sel. Xilem disebut juga sebagai pembuluh kayu yang membentuk kayu pada batang.
Trakeid dan trakea merupakan dua kelompok sel yang membangun pembuluh xilem. Kedua tipe sel berbentuk bulat panjang, berdinding sekunder dari lignin dan tidak mengandung kloroplas sehingga berupa sel mati. Perbedaan pokok antara keduanya, adalah pada trakeid tidak terdapat perforasi (lubang-lubang), hanya ada celah (noktah), berupa plasmodesmata yang menghubungkan satu sel dengan sel lainnya.
Sedangkan pada trakea terdapat perforasi pada bagian ujung-ujung selnya. Transpor air dan mineral pada trakea berlangsung melalui perforasi ini, sedangkan pada trakeid berlangsung lewat noktah (celah) antar sel selnya. Sel-sel pembentuk trakea tersusun sedemikian rupa sehingga merupakan deretan sel memanjang (ujung bertemu ujung) membentuk pipa panjang (kapiler). Bentuk penebalan pada dinding trakea dapat berupa cincin spiral, atau jala.

2) Floem

Pada prinsipnya, floem merupakan jaringan parenkim.Tersusun atas beberapa tipe sel yang berbeda, yaitu buluh tapis, sel pengiring, parenkim, serabut, dan sklerenkim.
Floem juga dikenal sebagai pembuluh tapis, yang membentuk kulit kayu pada batang. Unsur penyusun pembuluh floem terdiri atas dua bentuk, yaitu: sel tapis (sieve plate) berupa sel tunggal dan bentuknya memanjang dan buluh tapis (sieve tubes) yang serupa pipa. Dengan bentuk seperti ini pembuluh tapis dapat menyalurkan gula, asam amino serta hasil fotosintesis lainnya dari daun ke seluruh bagian tumbuhan.


B. Organ Pada Tumbuhan

Tumbuhan memiliki bermacam-macam organ yang tersusun atas beberapa jaringan tumbuhan. Berdasarkan fungsinya, organ pada tumbuhan dibedakan menjadi organ sebagai alat hara (orgnna nutritiaum), dan organ reproduksi (organa reproductikum). Alat hara meliputi akar, batang, dan daun, sedangkan organ reproduksi berupa putik dan benang sari yang terdapat pada bunga.

1. Akar

Akar merupakan organ tumbuhan yang penting karena berperan sebagai alat pencengkeram pada tanah/penguat dan sebagai alat penyerap air. Akar memiliki bagian pelindung berupa tudung akar yang tidak dimiliki oleh organ lain. Berdasarkan asal terbentuknya, akar dapat dibedakan atas akar primer dan akar adventitif. Akar primer terbentuk dari bagian ujung embrio dan dari perisikel, sedangkan akar adventitif berkembang dari akar yang telah dewasa selain dari perisikel atau keluar dari organ lain seperti dari daun dan batang.
Pada kebanyakan tumbuhan dikotil dan gimnospermae, sistem perakaran berupa akar tunggang yang memiliki satu akar pokok yang besar, sedangkan pada tumbuhan monokotil berupa akar serabut, yang berupa rambut dan berukuran relatif sama.
Pada irisan membujur akar akan terlihat bagian-bagian akar, mulai dari yang paling ujung disebut ujung akar. Ujung akar ditutupi oleh tudung akar (kaliptra). Kemudian dari ujung akar ke arah atas, terdapat zona pembelahan sel, pada daerah ini terdapat meristem apikal dan turunannya yang disebut meristem primer. Menuju ke atas, zona pembelahan menyatu dengan zona pemanjangan. Pada zona pemanjangan, sel-sel memanjang sampai sepuluh kali panjang semula, pemanjangan sel ini berguna untuk mendorong ujung akar (termasuk meristem) kedepan. Semakin keatas , zona pemanjangan akan bergabung dengan zona pematangan. Pada zona pematangan, sel – sel jaringan akar menyelesaikan dan menyempurnakan diferensiasinya.
Apabila kita membuat irisan melintang akar muda, maka akan terlihat struktur sel dan jaringan penyusun akar, berturut – turut, yaitu epidermis, korteks, endodermis dan stele (silinder pusat).
Lapisan terluar dari akar adalah epidermis yang tersusun atas sel –sel yang tersusun rapat satu sama lain tanpa ruang antar sel, berdinding tipis, dan memanjang, sejajar sumbu akar. Dinding sel epidermis tersusun dari bahan selulosa dan pectin yang menyerap air. Epidermis akar biasanya satu lapis. PErmukaan sel epidermis sebelah luar membentuk tonjolan yaitu berupa rambut atau bulu akar.

Korteks akar terutama terdiri atas jaringan parenkim yang relative renggang dan sedikit jaringan penyokongnya. Di sebelah dalam lapisan epidermis sering terdapat selapis atau beberapa lapis sel membentuk jaringan padat yang disebut hipodermis atau eksodermis yang dinding selnya mengandung suberin dan lignin.
Di sebelah dalam korteks terdapat selapis sel yang bersambung membentuk silinder dan memisahkan korteks dari slinder berkas pengangkut di sebelah dalamnya. Lapisan ini disebut endodermis. Sel-sel endodermis membentuk pita kaspari, yaitu penebalan dari suberin dan lignin pada sisi radial. Akibat adanya penebalan ini, larutan tidak bisa menembusnya.
Silinder pusat akar (stele) tersusun atas berkas pengangkut. Bagian ini dipisahkan dari korteks oleh endodermis. Bagian luar yang berbatasan dengan endodermis adalah perisikel yang tersusun atas sel-sel parenki berdinding tipis dan mempunyai potensi meristematik, sehingga sering disebut sebagai perikambium. Peranan perisikel terutama sebagai awal terbentuknya cabang akar tempat terjadinya kambium vaskuler, kambium gabus dan berperan dalam proses penebalan akar. sebelah dalam perisikel terdapat berkas pengangkut xilem dan floem. Xilem pada tumbuhan dikotil mengumpul di bagian tengah silinder pusat, tersusun seperti bentuk bintang, sedangkan pada tumbuhan monokotil, xilem dan floem letaknya berselang-seling.

2. Batang

Pada tumbuhan dikotil, berkas pembuluh tersusun dalam suatu lingkaran sehingga korteks terdapat di bagian luar lingkaran dan empulur di bagian dalam lingkaran. Pada tumbuhan dikotil ini, xilem tersusun di bagian dalam lingkaran. Di antara floem dan xilem terdapat cambium yang menyebabkan pertumbuhan sekunder pada tumbuhan dikotil.
Kambium merupakan jaringan meristem lateral yang berfungsi dalam pertumbuhan sekunder.

Dua macam kambium yang menghasilkan jaringan sekunder tumbuhan dikotil, yaitu:
a) kambium pembuluh (vascular cambium) yairg menghasilkan xylem sekunder (kayu) ke arah dalam dan floem sekunder ke arah luar,
b) kambium gabus (cork cambium) yang menghasilkan suatu penutup keras dan tebal yang menggantikan epidermis pada batang dan akar.
Empulur batang tersusun atas jaringan parenkim yang mungkin mengandung kloroplas. Empulur mempunyai ruang antarsel yang nyata dan tersusun atas perikambium yang disebut perisikel. Perikambium dibatasi oleh floem primer di sebelah dalam dan endodermis di sebelah luarnya. Jari-jari empulur berupa pita radier yang terdiri atas sederet sel,
mulai dari empulur sampai dengan floem. Fungsi utamanya adalah melangsungkan pengangkutan makanan ke arah radial. Pada tumbuhan dikotil, jari-jari empulur tampak berupa garis-garis halus yang membentuk lingkaran tahun.

3. Daun

Struktur morfologi daun pada setiap jenis tumbuhan berbeda-beda. Oleh karena itu, struktur morfologi daun dapat digunakan untuk mengklasifikasikan jenis-jenis tumbuhan. Struktur daun dapat dilihat dari: bentuk tulang daun (menvirip, menjari, melengkung, dan sejajar); bangun daun atau bentuk helaian daun (bulat, lanset, jorong, memanjang, perisai,
jantung, dan bulat telur); tepi daun (bergerigi, beringgit, berombak, bergiri, dan rata); bentuk ujung daun (runcing,meruncing, tumpul, membulat, rompang/ terbelah, dan berduri); bentuk pangkal daun (runcing, meruncing, tumpul, membulat, rata, dan berlekuk); dan prmukaan (licin, kasap, berkerut, berbulu, dan bersisik).
Tidak hanya sebagai tempat fotosintesis, daun juga berfungsi untuk transpirasi (penguapan air) dan respirasi (pernapasan). Bila kita mengamati preparat irisan melintang daun, maka akan kita jumpai bagian-bagian penyusun struktur anatomi daun yang sesuai dengan fungsi daun tersebut. Daun tersusun atas jaringan epidermis, jaringan parenkim, dan jaringan pengangkut.
Epidermis berfungsi sebagai pelindung jaringan ini memiliki struktur khusus sebagai adaptasi untuk berkangsungnya proses fotosintesis, yaitu adanya stoma yang dalam jumlah banyak disebut stomata. Stomata tersusun atas sel penutup dan sel tetangga yang banyak mengandung kloroplas. Adanya stomata memungkinkan terjadinya pertukaran gas antara sel – sel fotosintetik dibagian dalam daun dengan udara disekitarnya. Stomata juga merupakan jalan keluarnya uap air.

Bagian tengah dari struktur anatomi daun juga dapat kita jumpai jaringan parenkim yang menyusun mesofil daun dan terdiri atas parenkim palisade (parenkim pagar / jaringan tiang) dan parenkim spons (parenkim bunga karang. Parenkim palisade terdiri atas sel – sel yang memanjang di sel –sel bulat dan pada bagian ini banyak terdapat ruang antar sel sebagai tempat pertukaran gas selama fotosintesis berlangsung.
Hamper semua daun memiliki berkas pengangkut yang tampak sebagai tulang daun atau urat daun. Tulang daun ini berisi pembuluh angkut xylem dan floem. Berkas pengangkut pada daun berfungsi untuk mengangkut air dan hasil fotosintesis pada daun.

4. Bunga

Bunga merupakan organ reproduksi pada tumbuhan, organ ini bukanlah organ pokok dan rnerupakan modifikasi (perubahan bentuk) dari organ utama yaitu batang dan daun yang bentuk, susunan, dan warnanya telah disesuaikan dengan fungsinya sebagai alat perkembangbiakan pada tumbuhan. |ika kita memperhatikan bagian dasar bunga dan tangkai bunga, bagian ini merupakan modifikasi dari batang, sedangkan kelopak dan mahkota bunga merupakan modifikasi
dari daun yang bentuk dan warnanya berubah. Sebagian masih tetap bersifat seperti daun, sedangkan sebagian lagi akan mengalami metamorfosis membentuk bagian yang berperan dalam proses reproduksi.
Kelopak bunga merupakan bagian bunga yang masih mempertahankan sifat daun. Kelopak bunga berfungsi untuk melindungi kuncup bunga sebelum bunga mekar. Mahkota bunga biasanya memiliki warna dan bentuk yang menarik jika dibandingkan dengan kelopak bunga. Mahkota bunga ini berperan dalam menarik serangga dan agen penyerbukan yang
lain. Benang sari merupakan bagian yang berperan sebagai alat reproduksi jantan pada bunga, benang sari terdiri atas kepala sari yang merupakan tempat berkembangnya serbuk sari (gametofit jantan) dan suatu tangkai yang disebut filamen (tangkai sari).

Putik merupakan alat reproduksi betina pada bunga. Pada putik terdapat kepala putik yang biasanya memiliki permukaan yang lengket sebagai tempat menempelnya serbuk sari. Selain itu, putik memiliki saluran yang disebut tangkai putik. Saluran ini menuju ke ovarium pada dasar bunga yang mengandung bakal buah tempat sel telur (gametofit betina).

C. Proses Pengangkutan Pada Tumbuhan

1. Proses Pengangkutan Air dan Garam Mineral

Pengangkutan air dan garam - garam mineral pada tumbuhan tingkat tinggi, seperti pada tumbuhan biji dilakukan melalui dua mekanisme pertama, air dan mineral diserap dari dalam tanah menuju sel - sel akar.

Pengangkutan ini dilakukan diluar berkas pembuluh, sehingga disebut sebagai mekanisme pengangkutan ekstravaskuler. kedua , air dan mineral diserap oleh akar. selanjutnya diangkut dalam berkas pembuluh yaitu pada pembuluh kayu (xilem), sehingga proses pengangkutan disebut pengangkutan vaskuler.

Air dan garam mineral dari dalam tanah memasuki tumbuhan melalui epidermis akar, menembus korteks akar, masuk ke stele dan kemudian mengalir naik ke pembuluh xilem sampai pucuk tumbuhan.

a. Pengangkutan Ekstravaskuler

Dalam perjalanan menuju silinder pusat, air akan bergerak secara bebas di antara ruang antar sel. Pengangkutan air dan mineral dari dalam tanah di luar berkas pembuluh ini dilakukan melalui 2 mekanisme, yaitu apoplas dan simplas.

1. Pengangkutan Apoplas

Pengangkutan sepanjang jalur ekstraseluler yang terdiri atas bagian tak hidup dari akar tumbuhan, yaitu dinding sel dan ruang antar sel. air masuk dengan cara difusi, aliran air secara apoplas tidak tidak dapat terus mencapai xilem karena terhalang oleh lapisan endodermis yang memiliki penebalan dinding sel dari suberin dan lignin yang dikenal sebagai pita kaspari. Dengan demikian, pengangkutan air secara apoplas pada bagian korteks dan stele menjadi terpisah.

2. Pengangkutan Simplas

Padap engangkutan ini, setelah masuk kedalam sel epidermis bulu akar, air dan mineral yang terlarut bergerak dalam sitoplasma dan vakuola, kemudian bergerak dari satu sel ke sel yang lain melaluivplasmodesmata. Sistem pengangkutan ini , menyebabkan air dapat mencapai bagian silinder pusat. Adapun lintasan aliran air pada pengangkutan simplas adalah sel - sel bulu akar menuju sel - sel korteks, endodermis, perisikel, dan xilem. dari sini , air dan garam mineral siap diangkut keatas menuju batang dan daun.

b. Pengangkutan melalui berkas pengangkutan (pengangkutan intravaskuler)

Setelah melewati sel - sel akar, air dan mineral yang terlarut akan masuk ke pembuluh kayu (xilem) dan selanjutnya terjadi pengangkutan secara vertikal dari akar menuju batang sampai kedaun. Pembuluh kayu disusun oleh beberapa jenis sel, namun bagian yang berperan penting dalam proses pengangkutan air dan mineral ini adalah sel - sel trakea. Bagian ujung sel trakea terbuka membentuk pipa kapiler. Struktur jaringan xilem seperti pipa kapiler ini terjadi karena sel - sel penyusun jaringan tersebut tersebut mengalami fusi (penggabungan). Air bergerak dari sel trakea satu ke sel trakea yang di atasnya mengikuti prinsip kapilaritas dan kohesi air dalam sel trakea xilem.

2. Faktor – Faktor Yang Mempengaruhi Pengangkutan Air.

a. Daya Hisap Daun (Tarikan Transpirasi)

Pada organ daun terdapat proses penguapan air melalui mulut daun (stomata ) yang dikenal sebagai proses transpirasi. Proses ini menyebabkan sel daun kehilanagan air dan timbul tarikan terhadap air yang ada pada sel – sel di bawahnya dan tarikan ini akan diteruskan molekul demi molekul, menuju ke bawah sampai ke seluruh kolom air pada xilem sehingga menyebabkan air tertarik ke atas dari akar menuju ke daun. Dengan adanya transpirasi membantu tumbuhan dalam proses penyerapan dan transportasi air di dalam tumbuhan. Adapun transpirasi itu sendiri merupakan mekanisme pengaturan fisiologis yan g herhubungan dengan proses adaptasi tumbuhan terhadap lingkungan.

Ada beberapa factor yang mempengaruhi proses kecepatan transparasi uap air dari daun, yaitu:
1) Temperatur udara, makin tinggi temperature , kecepatan transprasi akan semakin tinggi.
2) Instensitas cahaya matahari, semakin tinggi intesitas cahaya matahari yang diterima daun, maka kecepatan transpirasi akan semakin tinggi.
3) Kelembaban udara
4) Kandungan air tanah.
Di samping itu, transpirasi juga dipengaruhi oleh faktor dalam tumbuhan di antaranya adalah banyaknya pembuluh, ukuran sel jaringan pengangkut, jumlah, dan ukuran stomata.

b. Kapilaritas Batang

Pengangkutan air melalui pembuluh kayu (xilem), terjadi karena pembuluh kayu (xilem) tersusun seperti rangkaian pipa-pipa kapiler.
Dengan kata lain, pengangkutan air melalui xilem mengikuti prinsip kapilaritas. Daya kapilaritas disebabkan karena adanya kohesi antara molekul air dengan air dan adhesi antara molekul air dengan dinding pembuluh xilem. Baik kohesi maupun adhesi ini menimbulkan tarikan terhadap molekul air dari akal sampai ke daun secara bersambungan.

c. Tekanan Akar

Akar tumbuhan menyerap air dan €taram mineral baik siang maupun malam. Pada malam hari, ketika transpirasi sangat rendah atau bahkan nol, sel-sel akar masih tetap menggunakan energi untuk memompa ion – ion mineral ke dalam xilem. Endodermis yang mengelilingi stele akar tersebut membantu mencegah kebocoran ion - ion ini keluar dari stele.
Akumulasi mineral di dalam stele akan menurunkan potensial air. Air akan mengalir masuk dari korteks akar, menghasilkan suatu tekanan positif yang memaksa cairan naik ke xilem. Dorongan getah xilem ke arah atas ini disebut tekanan akar (roof pressure). Tekanan akar juga menyebabkan tumbuhan mengalami gutasi, yaitu keluarnya air yang berlebih pada malam hari melalui katup pelepasan (hidatoda) pada daun.
Biasanya air yang keluar dapat kita lihat pada pagi hari berupa tetesan atau butiran air pada ujung-ujung helai daun rumput atau pinggir daun
kecil herba (tumbuhan tak berkayu) dikotil.

3. Pengangkutan Hasil Fotosintesis

Proses pengangkutan bahan makanan dalam tumbuhan dikenal dengan translokasi. Translokasi merupakan pemindahan hasil fotosintesis dari daun atau organ tempat penyimpanannya ke bagian lain tumbuhan yang memerlukannya. Jaringan pembuluh yang bertugas mengedarkan hasil fotosintesis ke seluruh bagian tumbuhan adalah floem (pembuluh tapis). Zat terlarut yang paling banyak dalam getah floem adalah gula, terutama sukrosa. Selain itu, di dalam getah floem juga mengandung mineral, asam amino,dan hormon, berbeda dengan pengangkutan pada pembuluh xilem yang berjalan satu arah dari akar ke daun, pengangkutan pada pembuluh xylem yang berjalan satu arah dari akar kedaun, pengengkutan pada pembuluh floem dapat berlangsung kesegala arah, yaitu dari sumber gula (tempat penyimpanan hasil fotosintesis) ke organ lain tumbuhan yang memerlukannya.

Satu pembuluh tapis dalam sebuah berkas pembuluh bisa membawa cairan floem dalam satu arah sementara cairan didalam pipa lain dalam berkas yang sama dapat mengalir dengan arah yang berlaianan. Untuk masing – masing pembuluh tapis, arah transport hanya bergantung pada lokasi sumber gula dan tempat penyimpanan makanan yang dihubungkan oleh pipa tersebut.


Fotosintesis
Fotosintesis merupakan proses pembentukan bahan organik dari zat anorganik dengan bantuan energi cahaya.
Reaksi:
energi cahaya
6CO2 + 6H2O ----------------> C6H12O6 + 6O2
klorofil

Fotosintesis terdiri dari dua tahap, yaitu reaksi gelap dan reaksi terang.


a. Reaksi Terang
Reaksi terang berlangsung di dalam grana dan memerlukan cahaya. Cahaya matahari berfungsi mengaktifkan klorofil dan melepaskan elektron sehingga terjadi fotolisis. Fotolisis adalah penguraian air menjadi hidrogen dan oksigen.


energi cahaya
Klorofil ---------------> klorofil
e- │
V
H2O --> O2 + 2H-

Satu atom oksigen yang dihasilkan segera bergabung dengan atom oksigen yang lain membentuk senyawa O2. Adapun H2 yang ditangkap NADP sebagai akseptor hidrogen sehingga menjadi NADPH2. Selama proses ini menghasilkan ATP.


b. Reaksi Gelap
Reaksi gelap berlangsung di stroma tanpa bantuan energi cahaya. Reaksi ini menurunkan energi berupa ATP dan NADPH yang berasal dari reaksi terang untuk fiksasi CO2. Pada saat ini terjadi pengikatan CO2 di udara oleh RuBP (ribulosa biphosphat) menjadi PGA (asam 3-fosfogliserat) yang akan berikatan dengan ion H+ (dari reaksi terang) menjadi PGAL (phosphor gliseral dehide). Melalui reaksi yang diselenggarakan oleh enzim, PGAL dibentuk menjadi glukosa atau amilum.


Kemosintesis
Kemosintesis merupakan proses pembentukan bahan organik dari zat anorganik dengan menggunakan energi dari bahan-bahan kimia.
Contohnya adalah sebagai berikut.


a. Bakteri Nitrosomonas dan Nitrosococcus mendapatkan energi dengan mengoksidasi NH3 dalam bentuk (NH4)2 CO3 menjadi asam nitrit.


Reaksi:
Nitrosomonas
(NH4)2CO3 + 3O2 ---------------> 2HNO2 + CO2 + 3H2O + energi
Nitrosococcus

b. Nitrobacter mengubah nitrit menjadi nitrat.


Reaksinya:
Ca(NO2)2 + O2 -> Ca(NO3)2 + energi
kalsium nitrit kalsium nitrat

Proses Penyerbukan dan Pembuahan

Penyerbukan merupakan:

- pengangkutan serbuk sari (pollen) dari kepala sari (anthera) ke putik (pistillum)

- peristiwa jatuhnya serbuk sari (pollen) di atas kepala putik (stigma)

Macam penyerbukan di alam

1. Penyerbukan tertutup (kleistogami)

Terjadi jika putik diserbuki oleh serbuk sari dari bunga yang sama. Dapat ddisebabkan oleh :

· Putik dan serbuk sari masak sebelum terjadinya anthesis (bunga mekar)

· Konstruksi bunga menghalangi terjadinya penyerbukan silang (dari luar), misalnya pada bunga dengan kelopak besar dan menutup. Contoh : familia Papilionaceae

2. Penyerbukan terbuka (kasmogami)

Terjadi jika putik diserbuki oleh serbuk sari dari bunga yang berbeda. Hal ini dapat terjadi jika putik dan serbuk sari masak setelah terjadinya anthesis (bunga mekar)

Beberapa tipe penyerbukan terbuka yang mungkin terjadi :

a. Autogamie: putik diserbuki oleh serbuk sari dari bunga yang sama

b. Geitonogamie: putik diserbuki oleh serbuk sari dari bunga yg berbeda, dalam pohon yg sama

c. Allogamie (Silang): putik diserbuki oleh serbuk sari dari tanaman lain yg sejenis

d. Xenogamie (asing): putik diserbuki oleh serbuk sari dari tanaman lain yg tidak sejenis

Beberapa tipe bunga yang memungkinkan terjadinya penyerbukan terbuka :

a. Dikogami

Putik dan benang sari masak dalam waktu yang tidak bersamaan.

· Protandri : benang sari lebih dahulu masak daripada putik

· Protogini : putik lebih dahulu masak daripada benang sari

b. Herkogami

Bunga yang berbentuk sedemikian rupa hingga penyerbukan sendiri tidak dapat terjadi. Misal Panili yang memiliki kepala putik yang tertutup selaput (rostellum).

c. Heterostili

Bunga memiliki tangkai putik (stylus) dan tangkai sari (filamentum) yg tidak sama panjangnya

· tangkai putik pendek (microstylus) dan tangkai sari panjang

· tangkai putik panjang (macrostylus) dan tangkai sari pendek

d. Tipe bunga yang penyerbukannya membutuhkan bantuan agen pembantu penyerbukan (pollinator); meliputi:

§ Anemofili (bunga yang penyerbukannya dibantu oleh angin)

§ Entomofili (bunga yang penyerbukannya dibantu oleh serangga)

§ Ornitofili (bunga yang penyerbukannya dibantu oleh burung)

§ Kiropterofili (bunga yang penyerbukannya dibantu oleh kelelawar)

PEMBUAHAN GANDA

Butir serbuk/serbuk sari Þ menempel pada kepala putik Þ membentuk buluh serbuk (2 inti, inti vegetatif dan inti generatif) berjalan ke arah mikropil (pintu kandung lembaga) Þ inti generatif membelah Þ 2 inti sperma Þ sampai di mikropil, inti vegetatif mati Þ satu inti sperma membuahi sel telur Þ embrio. Satu inti sperma lain membuahi inti kandung lembaga Þ endosperma (makanan cadangan bagi embrio).

Karena pembuahannya berlangsung dua kali maka pembuahan pada Angiospermae disebut pembuahan ganda.

Embrio pada tumbuhan berbiji tertentu dapat terbentuk karena beberapa sebab. yaitu :

1. Melalui peleburan sperma dan ovum (amfimiksis)

2. Tidak melalui peleburan sperma dan ovum (apomiksis), yang dapat dibedakan atas:

· Apogami : embrio yang terbentuk berasal dari kandung lembaga. Misalnya :

dari sinergid dan antipoda

· Partenogenesis : embrio terbentuk dari sel telur yang tidak dibuahi.

· Embrio adventif : merupakan embrio yang terbentuk dari sel nuselus, yaitu bagian

selain kandung lembaga.

PEMBUAHAN TUNGGAL

Strobilus jantan Þ serbuk sari Þ jatuh pada tetes penyerbukan (ujung putik) Þ buluh serbuk Þ membelah Þ inti tabung dan inti spermatogen Þ inti spermatogen Þ membelah Þ dua inti sperma Þ membuahi sel telur di dalam ruang arkegonium Þ zigot Þ lembaga di dalam biji Þ tumbuhan baru.

Pembuahan pada gymnospermae disebut pembuahan tunggal, karena tiap-tiap inti sperma membuahi satu sel telur.

Organ reproduksi pada gymnospermae disebut konus atau strobilus.
Di dalam strobilus jantan terdapat banyak anteridium yang mengandung sel-sel induk butir serbuk. Sel-sel tersebut bermeiosis dari setiap sel induk terbentuk 4 butir serbuk yang bersayap. Pada strobilus betina terdapat banyak arkegonium. Pada tiap-tiap arkegonium terdapat satu sel induk lembaga yang bermeiosis sehingga terbentuk 4 sel yang haploid. Tiga mati, dan satu sel hidup sebagai sel telur. Arkegonium ini bermuara pada satu ruang arkegonium.

* pembuahan ganda:
sperma 1 + sel telur ----->zigot ----->biji
sperma 2 + Inti Kandung Lembaga Sekunder --->endosperm--->buah

* perbedaan:
pembuahan tunggal_membentuk biji---->gimnospermae
pembuahan ganda_membentuk biji dan buah--->angiospermae

proses pembentukan sel kelemin jantan (pembuahan ganda)
pada ujung terdapat inti vegetatif dan inti generatif
inti generatif membelah mjd 2 yaituinti generatif 1 yang membentuk sperma 1 dan inti generatif 2 yg membentuk sperma 2
kemudian sperma 1 dan sperma 2 jatuh ke bawah sampai ke mikrofil dan akan membentuk zigot
di dlm mikrofil terdapat satu inti yg disebut mit0sis
mitosis membelah mjd 2 melalui pembelahan meiosis
lalu membelah lg mjd 4 dan disebut meiosis 2
dan terakhir, 4 inti itu membelah mjd 8 inti

proses pembentukan sel kelamin betina
pada 8 inti yg terbentuk melalui pembelahan meiosis dan mitosis itu terbagi mjd beberapa bagian yaitu
dlm mikrofil, 3 inti paling atas dsb sel2 antipoda
2 inti yg ada ditengah dsb inti kandung lembaga sekunder
dan ada 3 inti paling bawah, 2 yg ada di pinggir dsb sinergid dan 1 yg ada di tengah dsb ovum

PEMBUAHAN GANDA

Butir serbuk/serbuk sari Þ menempel pada kepala putik Þ membentuk buluh serbuk (2 inti, inti vegetatif dan inti generatif) berjalan ke arah mikropil (pintu kandung lembaga) Þ inti generatif membelah Þ 2 inti sperma Þ sampai di mikropil, inti vegetatif mati Þ satu inti sperma membuahi sel telur Þ embrio. Satu inti sperma lain membuahi inti kandung lembaga Þ endosperma (makanan cadangan bagi embrio).

Karena pembuahannya berlangsung dua kali maka pembuahan pada Angiospermae disebut pembuahan ganda.


PEMBUAHAN TUNGGAL

Strobilus jantan Þ serbuk sari Þ jatuh pada tetes penyerbukan (ujung putik) Þ buluh serbuk Þ membelah Þ inti tabung dan inti spermatogen Þ inti spermatogen Þ membelah Þ dua inti sperma Þ membuahi sel telur di dalam ruang arkegonium Þ zigot Þ lembaga di dalam biji Þ tumbuhan baru.

Pembuahan pada gymnospermae disebut pembuahan tunggal, karena tiap-tiap inti sperma membuahi satu sel telur

Penggunaanteknik kultur jaringan pada awalnya hanya untuk membuktikan teori “totipotensi”(“total genetic potential”) yang dikemukakan oleh Schleiden dan Schwann(1838) yang menyatakan bahwa sel tanaman sebagai unit terkecil dapat tumbuh danberkembang apabila dipelihara dalam kondisi yang sesuai……….




Tidak ada komentar:

Posting Komentar